## DESCRIPTION

The DIP series is a very compact design having a low profile package and a high profile package. This series is compatible with all DIP relays.

## FEATURES

## CHARACTERISTICS

- High resistance option available
- Diode option available
- Low profile package
- Standard pin configurations
- IC-pin compatible
- 4.25 kVDC breakdown voltage for pin out 13
- UL approval


## DIMENSIONS

All dimensions in mm [inch]


## Reed Relays

## ORDER INFORMATION

| Series | Nominal Voltage | Contact Form | Switch Model | Pin Out | Option () Version with magn. Shield |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DIP | xx - | xx | xx - | $\mathbf{x x}$ | x |
| Options | 05, 12, 15, 24 | 1A | 72, 75 | 10, 11, 12, 13* | $\begin{gathered} A, B, C, L(M), \\ D(Q), E(R), \\ F(S) \end{gathered}$ |
|  |  | 1B | 72 | 13*, 19 |  |
|  |  | 2A | 72 | 21 |  |
|  | 05, 12,15. 24 | 1 C | 90 | 51 |  |

*Selects 4-25 (3.0 kVRMS) breakdown voltage contact to coil.

## PIN OUT

View from top of component, 2.54 mm [ 0.10 "] pitch grid

## Part Number Example

DIP12-1A75-13L
12 is the nominal voltage
1A is the contact form
75 is the switch model
13 is the pin out
$\mathbf{L}$ is the option

10


11


19


12


13


21


( ) Versions with magnetic shield, View from top of component, 2.54 mm [ $\left.0.10^{\prime \prime}\right]$ pitch grid

A


L (M)


B


C


F (S)


OPTIONS DEPENDENCE ON CASE SIZES

| Contact Form | Package Size | Pin Out | Options |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | L | A | B | C | D | E | F | M | Q | R | S |
| 1A | Low Profile | 10 | X | X | x | x |  |  |  |  |  |  |  |
|  |  | 11 | x |  |  |  |  | x |  |  |  |  |  |
|  |  | 12 | x | x |  |  |  |  |  |  |  |  |  |
|  |  | 13 | x |  |  |  |  |  |  |  |  |  |  |
|  | High Profile | 10 |  |  |  | x |  |  |  |  |  |  |  |
|  |  | 11 |  |  |  |  | x |  | x | x | x |  | x |
|  |  | 12 |  |  |  |  | X | X | X |  |  |  |  |
|  |  | 13 |  |  |  |  | x |  |  | x | x |  |  |
| 1B | High Profile | 19 | x |  |  |  | x |  |  | x | x |  |  |
| 2A | High Profile | 21 | x | x |  |  | x | x | x | x | x | x | x |
| 1C | Low Profile | 51 | x |  |  |  |  |  |  |  |  |  |  |
|  | High Profile |  |  |  |  |  | x | x | x | X | x | x | x |

L = No option
A = Diode between Pin 6 and Pin 9 (Pin 6 is positive)
B $\quad=$ Internal shield on Pin 2.
C $\quad=$ Diode between Pin 6 and $\operatorname{Pin} 9$ (Pin 6 is positive and internal shield on Piin 2)
D $\quad=$ With Diode between pin 2 and 6 (Pin 2 is positive)
$\mathrm{E} \quad=\quad$ Internal shield on pin 9
$F \quad=$ With Diode between pin 2 and 6 (Pin 2 is positive) and Internal shield on pin 9
$\mathrm{M}=$ External magnetic shield
Q = External magnetic shield and diode between pin 2 and 6 ( Pin 2 is positive)
$R \quad=$ External magnetic shield and internal shield on pin 9
$\mathrm{S}=$ External magnetic shield and with diode between pin 2 and 6 (Pin 2 is positive) and internal shield on pin 9

## Reed Relays

RELAY DATA

| All Data at $20^{\circ} \mathrm{C}$ | Switch Model $\rightarrow$ Contact Form $\rightarrow$ | Switch 72 <br> Form A/B |  |  | Switch 75 Form A |  |  | Switch 90 Form C |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contact Ratings | Conditions | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |  |
| Switching Power | Any DC combination of V \& A not to exceed their individual max.'s |  |  | 10 |  |  | 10 |  |  | 10 | W |
| Switching Voltage | DC or peak AC |  |  | 200 |  |  | 500 |  |  | 100 | V |
| Switching Current | DC or peak AC |  |  | 0.5 |  |  | 0.5 |  |  | 0.2 | A |
| Carry Current | DC or peak AC |  |  | 1.0 |  |  | 1.0 |  |  | 0.5 | A |
| Static Contact Resistance | w/ 0.5 V \& 10mA |  |  | 150 |  |  | 200 |  |  | 150 | $\mathrm{m} \Omega$ |
| Dynamic Contact Resistance | Measured w/ $0.5 \mathrm{~V} \& 50 \mathrm{~mA}$, 1.5 ms after closure |  |  | 200 |  |  | 200 |  |  | 200 | $\mathrm{m} \Omega$ |
| Insulation Resistance across Contacts | 100 volts applied | $\begin{aligned} & 10^{12} \\ & 10^{12} \end{aligned}$ |  |  | $\begin{aligned} & 10^{12} \\ & 10^{12} \end{aligned}$ |  |  | $\begin{aligned} & 10^{9} \\ & 10^{12} \end{aligned}$ |  |  | $\Omega$ |
| Breakdown Voltage across Contact | Across contacts Contact to coil | $\begin{gathered} 500 \\ 1500^{* *} \end{gathered}$ |  |  | $\begin{gathered} 1500^{*} \\ 1500^{* *} \end{gathered}$ |  |  | $\begin{gathered} 150 \\ 1500 \end{gathered}$ |  |  | VDC |
| Operate Time incl. Bounce | Measured w/ 100 \% overdrive |  |  | 0.5 |  |  | 0.5 |  |  | 2.0 | ms |
| Release Time | Measured w/ no coil suppression |  |  | 0.1 |  |  | 0.1 |  |  | 2.0 | ms |
| Capacitance | at 10 kHz cross contact |  | $\begin{aligned} & 0.2 \\ & 2.0 \end{aligned}$ |  |  | $\begin{aligned} & 0.4 \\ & 2.0 \end{aligned}$ |  |  | $\begin{aligned} & 1.5 \\ & 0.3 \end{aligned}$ |  | pF |
| Life Expectancies |  |  |  |  |  |  |  |  |  |  |  |
| Switching 5V-10 mA | DC only \& $<10 \mathrm{pF}$ stray cap. |  | 1000 |  |  | 500 |  |  | 100 |  | $\begin{gathered} 10^{6} \\ \text { Cycles } \end{gathered}$ |
| For other load requirements, see the life test section on P. 120. |  |  |  |  |  |  |  |  |  |  |  |
| Environmental Data |  |  |  |  |  |  |  |  |  |  |  |
| Shock Resistance | $1 / 2$ sinus wave duration 11 ms |  |  | 50 |  |  | 50 |  |  | 50 | g |
| Vibration Resistance | From $10-2000 \mathrm{~Hz}$ |  |  | 20 |  |  | 20 |  |  | 20 | g |
| Ambient Temperature | $10^{\circ} \mathrm{C} /$ minute max. allowable | -20 |  | 70 | -20 |  | 70 | -20 |  | 70 | ${ }^{\circ} \mathrm{C}$ |
| Stock Temperature | $10^{\circ} \mathrm{C} /$ minute max. allowable | -35 |  | 95 | -35 |  | 95 | -35 |  | 95 | ${ }^{\circ} \mathrm{C}$ |
| Soldering Temperature | 5 sec. |  |  | 260 |  |  | 260 |  |  | 260 | ${ }^{\circ} \mathrm{C}$ |
| * 600 VDC with 5 V coil, 1000 VDC with 12 V coil. <br> ** Selects Pin out 13 and 425 kVDC ( 3.0 kVRMS) breakdown voltage contact to coil. |  |  |  |  |  |  |  |  |  |  |  |

COIL DATA

| Contact Form | Switch Model | Coil Voltage |  | Coil Resistance |  |  | Pull-in Voltage | Drop-out Volage | Nominal Coil Powe |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All Data at $20^{\circ} \mathrm{C}$ |  | VDC |  | $\Omega$ |  |  | VDC | VDC | mW |
|  |  | Nom. | Max. | Min. | Typ. | Max. | Max. | Min. | Typ. |
| 1 A | $\begin{aligned} & 72 \\ & 75 \end{aligned}$ | 5 | 7.5 | $\begin{gathered} 450 \\ (180) \end{gathered}$ | $\begin{gathered} 500 \\ (200) \end{gathered}$ | $\begin{gathered} 550 \\ (220) \end{gathered}$ | 3.5 | 0.75 | 50 |
|  |  | 12 | 16 | 900 | 1000 | 1100 | 8.4 | 1.8 | 145 |
|  |  | 15 | 20 | 1800 | 2000 | 2200 | 10.5 | 2.2 | 115 |
|  |  | 24 | 30 | 1800 | 2000 | 2200 | 16.8 | 3.6 | 290 |
| 1B ** | 72 | 5 | 7.5 | 450 | 500 | 550 | 3.5 | 0.75 | 50 |
|  |  | 12 | 16 | 900 | 1000 | 1100 | 8.4 | 1.8 | 145 |
|  |  | 15 | 20 | 1800 | 2000 | 2200 | 10.5 | 2.2 | 115 |
|  |  | 24 | 30 | 1800 | 2000 | 2200 | 16.8 | 3.6 | 290 |
| 2A | 72 | 5 | 7.5 | 180 | 200 | 220 | 3.5 | 0.75 | 125 |
|  |  | 12 | 16 | 450 | 500 | 550 | 8.4 | 1.8 | 290 |
|  |  | 15 | 20 | 1800 | 2000 | 2200 | 10.5 | 2.2 | 115 |
|  |  | 24 | 30 | 1800 | 2000 | 2200 | 16.8 | 3.6 | 290 |
| 1 C | 90 | 5 | 7.5 | 180 | 200 | 220 | 3.5 | 0.75 | 125 |
|  |  | 12 | 16 | 450 | 500 | 550 | 8.4 | 1.8 | 290 |
|  |  | 15 | 20 | 1800 | 2000 | 2200 | 10.5 | 2.2 | 115 |
|  |  | 24 | 30 | 1800 | 2000 | 2200 | 16.8 | 3.6 | 290 |
| () For Switch 75. <br> * The pull-in / drop-out voltage and coil resistance will change at rate of $0.4 \%$ per ${ }^{\circ} \mathrm{C}$. <br> ** Re-closure of Form B may occur if the max. coil voltage is exceeded. Coil polarity on Form B must be observed. Pin 2 is positive. |  |  |  |  |  |  |  |  |  |

